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Challenge

 Simulation of 
 deformable/soft tissue
 accurate and precise
 patient-specific
 that includes the interaction with the clinician (tools, 

probe,...) and the surgical navigation system
 in interactive time

► Build a digital patient as close as possible to the 
real patient

► Use (and measure) soft-tissue patient-specific 
constitutive law"

Acc+ Prec-
Exact

Acc- Prec+
Precise



  

Medical simulator feature list

 Medical simulator have to include
 Modeling (soft tissue deformations)
 Interaction (sensors, force feedback)
 Graphics (medical image simulation / 3D 

environment)
 Event recording = trace what happened 

 For usage study, quality control
 For pedagogy: skill assessment, learning path, 

exercises, validation of the gesture,...

+ Validation (accuracy/precision of the simulation)



  

Different types of simulator

 Four types of medical digital simulators should be 
distinguished
 Learning simulators
 Understanding simulators
 Planning simulators
 Per-operative simulators



  

Learning Simulators

 Aim at 
 Learning an intervention technique or gesture
 Replacing anatomical specimen and mechanical 

simulators

 Need to include
 Force feedback and tissue 

deformation (“visuo-haptic simulators”)
 Small subset of generic 

tissue behaviour

simbionix lap mentor



  

Learning: virtual prostate biopsy

 Learning Path, user interaction / US imaging + 
deformation effect

[Fiard et al, 2013]



  

Understanding Simulators

 Also called morpho-dynamic simulator
 Aim at 

 Understanding a phenomenon/pathological case

→ Classical meaning of “model” in science
 Helping to diagnose a specific patient and to choose a 

specific treatment

 Need to include
 3D deformations and interactions with environments of 

tissues
 Some pathological behavior at a “high” level of modeling



  

Respiratory Motion

 Understand organ displacements and 
deformations

[Craighero et al, 2005]

 Thorax

Abdomen



  

Understanding hemidiaphragm

 Aim: understanding raised hemi-diaphragm
 Half the diaphragm is paralyzed
 Paradoxical movements

 Very small volume intake

imagingpathways.health.wa.gov.au

[Promayon Baconnier, 2008]



  

Planning Simulators

 Aim at
 Define the operative strategy
 Plan an intervention

→ anticipate a functional/anatomical effect

 Need to include
 Patient specific data (tissue properties, disease)
 Medical level validation 



  

Issues of Respiratory Motions

 Dose planning and control
 Interventional Radiology, 

puncture, biopsy 

→ Reaching target organ

Rit et al 2009

[Hostettler, 08]



  

Biomechanical breast modelling

 Aim: improve patient positioning during breast 
cancer radiotherapy

modified from [Saliou 2005]

[Vallier et al, 2013]



  

Per-operative simulators

 Also called «the grail»
 Aim at 

 Simulating the complete environment and intervention 
 Unity of place
 Unity of time

 Need to include...

 ...everything!



  

Per-Operative: Low-cost brain 
shift compensation

 Aim: replacing the high cost intra-operative MRI
by 2.5D US images + biomechanical model.

 Grail: estimate brain shift deformations from 
2.5D localized US images + model

[Ferrant 2002]

[Bucki et al, 2007]

2.5D localized US
→ Doppler effect



  

Different types of challenges

 Real-time interaction with the user
 Real-time computation of tissues
 Accuracy and robustness
 Patient-specific fidelity



  

Needed features

 Different types ► different approaches!

Accuracy and Robustness

Patient specific

Real-time computation

Real-time interaction

Learning
Understanding
Planning
Per-operative
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Validation

 4 types of simulators
 Learning

- interaction is more important
- simulation does not have to be exact or patient-
specific

 Others
as the clinician will base his decisions on the 
simulator results, validation is essential

 Validation of the 
 Physical realism
 Parameters (even for continuous model)



 

Validation

 In medical literature, validation is nearly always 
the main point 

 Elsewhere
 It is too often in the “to do” / “future works”
 Or reduced to one image/video comparison

 Why?
 Not so easy to do or organize
 Can show negative results! (not easy to publish a 

paper finishing by “the validation section proved 
that the simulation are not accurate enough!”)



 

V&V

Reality
To model
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reality using 
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Model
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Simulate Validation

Verification

Sensitivity
Analysis

[Deram 2012]



  

Verification of soft tissue models

 Verification
 Mathematical point of view
 Ensure that the mathematical model solve the 

mathematical problem with enough precision / accuracy

Oberkampf
Sandia Nat. Labs



  

[Maas 2012]

[Miller 2007]

Verification of soft tissue models

  Code validation
 Comparison with analytical

solution of known problems

 Comparison with previously
verified numerical 
implementation

 Computation validation
 Ex: refined mesh convergence

[Otamendi 
2006]
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Validation of soft tissue models

 Aim
 Ensure the numerical solution can be used for medical 

decision

Oberkampf
Sandia Nat. Labs



  

V&V of soft tissue models

 How easy is it?
 Beside theoretical comparison, the most popular 

way is by comparison with data
 Four types of comparisons

1. comparison with in silico data
 Comparison with other validated numerical simulations

= Verification



  

Four different types of 
comparisons

[Mollemans 2007]

2. In vitro experiments 

3. Ex vivo experiments

4. In vivo

[Kerdok 2003]

[Shi 2005]



  

How easy is it?

 4 criteria (Deram 2012)
 Access to data/parameters

how easy it is to access data/parameters
 Boundary condition control

how easy it is to known/control the boundary conditions
 Set-up

how easy is it to organize/set up the validation 
(acquisition chain, data analysis...)

 Realism
how close to reality is the experiment? How close is it to 
comparing with reality ?



  

Validation levels

Realism

Boundary condition control

Easy to Set-up

Access to data

In vivo

Ex vivo

In vitro

In silico



 

Example: in vitro comparison

 Experimental validation
 Needs a real physical model 

→  difficult to control the material properties of a 
build object

 Needs a control of experimental condition
→ difficult to be really precise (error in building or 
assembling, position or force control, friction 
condition...)

 Examples
 Truth Cube
 Ad hoc phantoms



 

Example: truth-cube design

 Truth Cube (Kerdok and al., 2003)

 Silicon cube of supposedly known mechanical 
properties (elasticity, contractility)

 Build layer by layer
 Each layer has 7x7 Teflon beads



 

Example: truth-cube experiments

 Indentation/compression controlled by CT scan

 Bead positions segmented
→ local displacement/deformation in the cube



 

 Simulation of the experiments and comparisons 
of the real displacements with simulated ones

 Possible comparison of different models

Example: truth-cube simulations



 

Example: In vivo comparison

 Comparison with medical data are not easy
 Possible if

 Clinicians need control exams (you cannot ask for a 
post-operative CT scan if there is no clinical needs!)
e.g. maxillofacial surgery (CT scan)

 Non-invasive data acquisition
e.g. respiratory movements (dynamic MRI)



 

Example: dynamic MRI

3 min

respiratory 
signal

 L

 H

R



➄

 

End of inspiration
model ≈ real data
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 Biopsy and TRUS echography
 Images with low resolution
 Prostate is deforming
 2D / 3D projection
 Usually pre-operative MRI

 Koelis
 Planning

Mapping
Localization

 ANR ProsBot

Prostate Cancer detection



 Create a patient-specific biomechanical model
 Interaction TRUS probe / prostate
 Simulation of the deformations
 Per-operative simulator
 Interaction between US images and model
 V & V needed before including it in the final 

medical device

Aim of the simulator



 Be as close as possible to the real physical object

 Everything can be directly used in clinical conditions

Validation Workflow



 US volume acquisition
 With deformation
 Without deformation (with displacements)
 Trajectory are recorded for V&V (3D tracker)

 Realistic phantom

Acquisition



 Manual Segmentation

 4 targets

 Two mesh

 13k tet
 26k tet

 Linear FEM

 Parameters + BC

Simulation



 Using MML and CamiTK
 Comparison of many different metrics

0.33mm 0.57mm

X = Error accumulated in the final error

X X

Comparison and analysis



 Estimation of required precision in the model

7/4/14 Modélisation biomécanique pour l'imagerie de prostate 44

X4 Acquisition

Test on 120 simulation



Initial Results

 3 Linear FEM method (SOFA)
 2 mesh 
 Parameter study
 4 experiments (lots of displacement)
 1.74 +/- 0.66 mm

 Accumulated errors
 Potentially 50% comes from the simulation
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In vivo measurements

 Ex vivo measurements are important for building 
simulators but are different to in vivo 
measurements (Kerdok et al. 2006)
 Vascularization
 Temperature
 Elasticity..

 To be patient-specific
→ measure the properties in vivo and in situ



 

Two main approaches

 Elastography: imaging deformation (MR or US)
 Image of the organ before and after a controlled 

stress → deformation (generally ultrasound)
 Measure the tissue local displacement

 Direct mechanical test (indentation or aspiration)
 Direct mechanical stress/probing 
 Measure of the tissue deformation or response using 

force sensors (identation) or camera (aspiration)

→ Inverse problem gives the model parameters



 

Magnetic Resonance 
Elastography

(from R. Willinger, Univ. Strasbourg)



 

Ultrasonic Imaging Elastography

M.Fink,MTanter,J.Bercoff



 

Mechanical Probing

 External measurements                        commercial

 Internal tissue/organ measurements
 Indentation 
 Aspiration 

Carter et al. (2001) (liver)



 

In vivo is difficult

 Cannot create tissue damage
 Per-operative use implies

 Sterilization
 Ergonomics and functional (bulk, time,...)

 Most difficult: sterilization
 Aggressive process : T140° for 20min, steam, high-

pressure, heat, chemicals (liquid, gaz, plasma...)
 Fragile parts (electronics, sensor) could easily be 

dammaged
 Everything has to be sterile (even parts not in the field, 

because of projection risks)



 

   
  c

h
am

be
r

Aspiration/suction : principles

 In contact

 Negative pressure 
 
 

applied in the chamber 
→ tissue is "aspired"

 Aspired height       is 
measured (mirror)

 As the device is fixed 
by suction, 
measurements are 
independent of the 
natural movements 
(beathing, heart beat...)

Organ / tissue

To pump
+ manometer

 1.27 



 

Per-operative measurements: 
aspiration

 Vuskovic (2001)
Kauer et al. (2002) :
uterus

 Nava et al. (2008) :liver



 

LASTIC (TIMC-IMAG)

 First prototype: light (cheap)

 Second prototype: integrated camera/mirror

(Schiavone et al, 2009)



 

Capture and segmentation

 The image of the tissue deformed by the applied 
pressure is captured and segmented

-1 mbar                         -7 mbar                  -14 mbar

 -21 mbar                     -27 mbar                -33 mbar

 -40 mbar                     -46 mbar                -52 mbar+VIDEO



 

Inverse problem: optimization

 A FEM is optimized to fit the measurements

E = 32 kPa



 

Validation of the validation tool...

 Is the measurement accurate/precise?



 

Conclusion

Medical simulation is a quest...

"The Achievement of the Grail" (1891-4) Tapestry by Edward Burne-Jones, 
Museum and Art Gallery of Birmingham
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