Frame-based Simulation of Complex Mechanical Structures

$\begin{array}{ll} \mbox{François Faure}^{1,2,3} & \mbox{Benjamin Gilles}^{4,2,3} \\ \mbox{Guillaume Bousquet}^{1,2,3} & \mbox{Dinesh K. Pai}^5 \end{array}$

¹Grenoble Universités, ²INRIA, ³LJK – CNRS, ⁴Tecnalia, ⁵UBC

November 2012

Taken from:

• Gilles, Bousquet, Faure, Pai; Frame-based Elastic Models; ACM Transactions on Graphics, 2011, 30 (2)

 Faure, Gilles, Bousquet, Pai; Sparse Meshless Models of Complex Deformable Solids; ACM Transactions on Graphics (SIGGRAPH'2011)

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Overview

Motivation and Previous Work

Background

Frame-based elastic models

Compliance distance

Material-aware kernel functions

Simulation

Results

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Motivation: Interactive deformation of complex models

• Intricate materials

Limitations of Traditional FEM

- Well-shaped elements
- One material per element
- Too many nodes !

Previous Work: Interactive FEM

Embed complex geometry in a coarse mesh

• Barycentric embedding [Müller 04, Sifakis 07]

• Pre-compute deformation modes [James 03, Barbič 05]

• Non-uniform elements [Kharevych 09, Nesme 09]

Frame-based Simulation of Complex Mechanical Structures, UBC, November 2011

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Previous Work: Frame-based Models

GMLS + elastons [Martin 10]

Skinning + geometry-based [Müller 11]

Skinning + deformation gradient [Gilles 11]

Skinning + Laplacian [Kavan 12]

Frame-based Simulation of Complex Mechanical Structures, UBC, November 2011

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Interactive demo

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Overview

Motivation and Previous Work

Background

Frame-based elastic models

Compliance distance

Material-aware kernel functions

Simulation

Results

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Finite Element Discretization

• Initial mesh nodes
$$\mathbf{\bar{q}} = \begin{pmatrix} q_1 \\ \vdots \\ \bar{q_n} \end{pmatrix}$$

• Node displacements $\mathbf{\bar{u}} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$

(=)

• Displaced mesh nodes ${\bf q}= \bar{\bf q}+{\bf u}$

Element Interpolation

• Displacement field

 $u(p) = \sum_i N_i(p)u_i$

• $N_i(p_i) = 1$ • $N_i(p_{i \neq i}) = 0$

Deformation

Deformation Gradient

$${f F}(p)={dq(p)\over dar q}$$

- Strain measurements:
 - Cauchy: $\epsilon = (\mathbf{F} + \mathbf{F}^T)/2$
 - Green-Lagrange: $\epsilon = (\mathbf{F}^T \mathbf{F} \mathbf{I})/2$
 - etc.

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Elastic Forces

- Deformation energy rate
 - material properties (Hooke, StVenant-Kirchhoff, Mooney-Rivlin, etc.)

 $dW(\epsilon)$

• Total deformation energy: integrate across the volume

$$W=\int_{\mathcal{V}}dW(p)$$

• Forces derive from the potential energy:

$$\mathbf{f} = -\frac{\partial W}{\partial \mathbf{q}}$$

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Space Integration

• Compute values at Gauss Points

• Approximate integral as weighted sum

$$\mathbf{f} = -rac{\partial W}{\partial \mathbf{q}} \simeq -\sum_{p \in G} rac{\partial W(p)}{\partial \mathbf{q}} \mathcal{V}_p$$

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Summary: pipeline

Summary: pipeline

An alternative deformation field: Computer Graphics Skinning

• attach a deformable body to an articulated skeleton

- Continuous deformation field
- No volumetric mesh, arbitrarily few control nodes
- Allows to derive continuous media mechanics ?

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Linear Blend Skinning

• Linear Blend Skinning: blend rigid motions

P = w1*P1 + w2*P2

• Artefacts with large deformations

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Non-linear Blend Skinning

• Dual Quaternion Skinning [Kavan07]

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Frame-based discretization

• Replace polygon interpolation with rigid motion blending

- Same pipeline as FEM
- Shape functions ?
- Integration points ?

Overview

Motivation and Previous Work

Background

Frame-based elastic models

Compliance distance

Material-aware kernel functions

Simulation

Results

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Frame-based Elastic Models

Gilles, Bousquet, Faure, Pai; Frame-based Elastic Models; ACM Transactions on Graphics, 2011, 30 (2)

Shape Functions

- Harmonic weights
 [Joshi07]
- Weights based on geodesic distance
- Custom weights e.g. mix rigid / deformable

Smooth
Interpolating
Slow convergence
Fast frame insertion
Tunable support
Approximating

No numerical stiffening

Space integration

Spatial integration : $W = \int_{V} W(\bar{p}) dv \approx \sum W(\bar{p}) \Delta v$

Approximation using midpoint rule

Voxelization

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Adaptivity

Material aware shape function

Overview

Motivation and Previous Work

Background

Frame-based elastic models

Compliance distance

Material-aware kernel functions

Simulation

Results

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Shape functions = blending functions = weight functions

• F.E.M.: attached to each (node,element)

$$u(x)=\sum_i\phi_i(x)u_i$$

Meshless:

- kernel function attached to each node
- Shape functions = kernel functions normalized in each point

$$u(x) = \frac{\sum_i \phi_i(x) u_i}{\sum_i \phi_i(x)}$$

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Limitations of Radial Basis Functions

• Large spheres: overlap artifacts

Limitations of Radial Basis Functions

- Large spheres: overlap artifacts
- Small spheres: too many nodes

Anisotropic Functions

- Control function overlap using:
 - A few anisotropic functions

Shape Functions and Material

• Standard shape functions are geometry-based: 1 - *dist/size*

Shape Functions and Material

- Standard shape functions are geometry-based: 1 *dist/size*
- they are well suited for **homogeneous** materials,

Shape Functions and Material

- Standard shape functions are geometry-based: 1 *dist/size*
- they are well suited for **homogeneous** materials,
- but not for **heterogeneous** materials,
 - wrong deformation
 - wrong element stiffness

Compliance distance

• Distance scaled by inverse stiffness:

$$d_c(a, b) = \int_{x_a}^{x_b} \underbrace{\frac{1}{E(x)}}_{compliance} |dx|$$

Compliance distance

• Distance scaled by inverse stiffness:

$$d_c(a, b) = \int_{x_a}^{x_b} \underbrace{\frac{1}{E(x)}}_{compliance} |dx|$$

• Shape functions linear wrt. compliance distance

Compliance distance

• Distance scaled by inverse stiffness:

$$d_c(a, b) = \int_{x_a}^{x_b} \underbrace{\frac{1}{E(x)}}_{compliance} |dx|$$

- Shape functions linear wrt. compliance distance
- Exact stiffness and displacement in 1d
- Distance computations only !

Overview

Motivation and Previous Work

Background

Frame-based elastic models

Compliance distance

Material-aware kernel functions

Simulation

Results

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Kernel function in 2d and 3d

Node inside the bone

- Weight values
 - at given node: 1
 - \bullet at other nodes: 0
- Depend on:
 - compliance distance
 - positions of the other nodes

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Voronoi-based interpolation

• Decompose space in cells based on distance

Voronoi-based interpolation

- Decompose space in cells based on distance
- Interpolate the weight along the shortest paths inside the cells
 - Cell center: 1
 - Cell edge: 0.5

Voronoi-based interpolation

- Decompose space in cells based on distance
- Interpolate the weight along the shortest paths inside the cells
 - Cell center: 1
 - Cell edge: 0.5
- Extrapolate outside
 - Neighbor centers: 0

Example

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Example

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Example: blending functions

Automatic node distribution

• Lloyd relaxation

Repeat:

- compute Voronoi cells
- move the nodes to the cell centers
- until convergence
- Example: non-uniform stiffness

More samples in the more deformable regions

Overview

Motivation and Previous Work

Background

Frame-based elastic models

Compliance distance

Material-aware kernel functions

Simulation

Results

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Implementation

• Modular force computation pipeline

Implementation

• Modular force computation pipeline

- Implementation in the SOFA open-source framework
 - implicit integration, GPU collision
 - Available in the public version: September 2011 www.sofa-framework.org

Space Integration

- Generalized elastons
- Exact integration of linear functions
- Regions with as-linear-as possible weight functions:
 - influenced by the same nodes

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Frame-based Simulation of Complex Mechanical Structures, UBC, November 2011

Space Integration

- Generalized elastons
- Exact integration of linear functions
- Regions with as-linear-as possible weight functions:
 - influenced by the same nodes
 - subdivided to reduce linearity error

10 points

linearity error (center node)

Frame-based Simulation of Complex Mechanical Structures, UBC, November 2011

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Overview

Motivation and Previous Work

Background

Frame-based elastic models

Compliance distance

Material-aware kernel functions

Simulation

Results

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Validation

Comparison with high resolution F.E.M. solutions

• continuously changing material

F.Faure, B.Gilles, G.Bousquet, D.K.Pai

Conclusion

New anisotropic shape functions

- Material-aware
- Detailed stiffness maps in coarse displacement fields
- Interactive simulation of complex models.
- Not restricted to frame-based

Future work

- Conditions for convergence
- Fine control of weight functions
- Adaptivity

Thanks !

• ERC - Passport for Liver Surgery - FP7, ICT-2007.5.3

- NSERC
- Canada Research Chairs Program
- Human Frontier Science Program

