
SOFA: a modular yet efficient physical
simulation architecture

François Faure, INRIA

22 octobre 2013



Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion



A complex physical simulation

Material, internal forces, contraints, contact detection and
modeling, ODE solution, visualization, interaction, etc.



Open-Source Simulation Software

PhysX ODE Bullet

I Open-source libraries (ODE, Bullet, PhysX, etc.) provide :
I limited number of material types
I limited number of geometry types
I no control on collision detection algorithms
I no control on interaction modeling
I few (if any) control of the numerical models and methods.
I no control on the main loop

I We need much more !
I models, algorithms, scheduling, visualization, etc.



A generic approach

I Behavior model : all internal laws
I Others : interaction with the world
I Mappings : relations between the models (uni- or

bi-directional)



Animation of a simple body

I a liver

I inside : soft material
I surface : stiffer material

A specialized program :� �
f = M∗g
f += F1 ( x , v )
f += F2 ( x , v )
a = f /M
a = C( a )
v += a ∗ dt
x += v ∗ dt
d i sp lay ( x )
� �
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Components

I state vectors (DOF) :
x , v ,a, f

I constraints : fixed points
other : oscillator, collision
plane, etc.

I force field : tetrahedron
FEM

I force field : triangle FEM
I mass : uniform
I ODE solver : explicit Euler
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I force field : tetrahedron

FEM
I force field : triangle FEM
I mass : uniform
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Components

I state vectors (DOF) :
x , v ,a, f

I constraints : fixed points
I force field : tetrahedron

FEM
I force field : triangle FEM
I mass : uniform
I ODE solver : explicit Euler

other : Runge-Kutta,
implicite Euler, static
solution, etc.



Multiple objects with their own solvers

Each object can be simulated using its own solver

F MDOF solver

Scene

F MDOF solver

Object 1 Object 2



Multiple objects with the same solver

A solver can drive an arbitrary number of objects of arbitrary
types

F MDOF

Scene

F MDOF

solver
Object 1 Object 2



Processing multiple objects using visitors

I The ODE solver sends visitors to apply operations
I The visitors traverse the scene and apply virtual methods

to the components
I The methods read and write state vectors (identified by

symbolic constants) in the DOF component
I Example : accumulate force

I A ResetForceVisitor recursively traverses the nodes of
the scene (only one node here)

I All the DOF objects apply their resetForce() method
I An AccumulateForceVisitor recursively traverses the

nodes of the scene
I All the ForceField objects apply their addForce(

Forces, const Positions, const Velocities )
method

I the final value of f is weight + tetra fem force + trian fem
force



Scene data structure

Scene hierarchy :
1. the scene is composed of nodes organized in a Directed

Acyclic Graph (DAG, i.e. generalized hierarchy)
2. nodes contain components (mass, forces, etc.) and a list of

child nodes
3. components contain attributes (density, stiffness, etc.)

Data graph :
I attributes can be connected together for automatic copies
I attributes can be connected by engines, which update their

output based on the values of their input
I the attributes and engine compose a DAG
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Layered object

Detailed geometry embedded in a coarse deformable grid

I independent DOFs (blue)

I skin vertices (salmon)
I mapping
I collision samples (green)
I collision mapping
I apply displacements

1. vskin = Jskinv
2. vcollision = Jcollisionvskin

I apply forces
1. fskin = JT

collisionfcollision
2. f = JT

skinfskin
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More on mappings

I Map a set of degrees of freedom (the parent) to another
(the child).

I Typically used to attach a geometry to control points (but
see Flexible and Compliant plugins).

I Child degrees of freedom (DOF) are not independent :
their positions are totally defined by their parent’s.

I Displacements are propagated top-down (parent to child) :
vchild = Jvparent

I Forces are accumulated bottom-up : fparent + = JT fchild



The physics of mappings

Example : line mapping

vc =
(

a b
)( v1

v2

)
= Jv(

f1
f2

)
=

(
a
b

)
fc = JT fc



Examples of mappings

I RigidMapping can be used
to attach points to a rigid
body

I to attach a visual model

I BarycentricMapping can
be used to attach points to
a deformable body

I More advanced mapping
can be applied to fluids
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On the physical consistency of mappings

I Conservation of energy :
Necessary condition : vchild = Jvparent ⇒ fparent + = JT fchild

I Conservation of momentum :
Mass is modeled at one level only. There is no transfer of
momentum.

I Constraints on displacements (e.g. incompressibility, fixed
points) are not easily applied at the child level
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Two objects in contact

Example : 2-layer liver against 3-layer liver using a contact
force.
Use extended trees (Directed Acyclic Graphs) to model trees
with loops.



ODE solution of interacting objects

I Soft interactions : independent processing, no
synchronization required

I Stiff interactions : unified implicit solution with linear solver,
synchronized objects

I Hard interaction constraints using Lagrange multipliers
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Actions implemented by Visitors

I No global state vector
I Operation = graph traversal + abstract methods + vector

identificators



Example : clearing a global vector
I The solver triggers an action starting from its parent

system and carrying the necessary symbolic information
I the action is propagated through the graph and calls the

appropriate methods at each DOF node



Example : accumulating the forces
I The solver triggers the appropriate action
I the action is propagated through the graph and calls the

appropriate (botom-up) methods at each Force and
Mapping node



Efficient implicit integration

I Large time steps for stiff internal forces and interactions
I solve (αM + βh2K )∆v = h(f + hKv) Iteratively using a

conjugate gradient solution

Actions :
I propagateDx
I computeDf
I vector operations
I dot product (only global value directly accessed by the

solver)
System assembly in the Compliant plugin



Efficiency

I No global state vector
I they are scattered over the DOF components
I each DOF component can be based on its own types (e.g.

Vec3, Frame, etc. )
I symbolic values are used to represent global state vectors

I Action = graph traversal + global vector ids + call of
abstract top-down and bottom up methods

I Displacements are propagated top-down
I Interactions forces are evaluated after displacement

propagation
I Forces are accumulated bottom-up
I virtual functions applied to components
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Collision detection and response

CollisionPipeline component orchestrates specific components
I BroadPhase : bounding volume intersections
I NarrowPhase : geometric primitive intersections
I Reaction : what to do when collisions occur
I GroupManager : putting colliding objects under a common

solver
Recent work uses the GPU
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Parallelism in time integration

Different levels of parallelism :
I Low level : GPU implementations of components
I High level : task-based using data dependencies
I Thread-based using the Multithread plugin

We can combine them !



GPU Parallelism
I StiffSpringForceField, TetrahedronFEMForceField,

HexahedronFEMForceField are implemented on the GPU
I The DOF component makes data transfer transparent
I CPU and GPU components can be used simultaneously
I Nice speedups
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Conclusion - Features

High modularity :
I Abstract components : DOF, Force, Constraint, Solver,

Topology, Mass, CollisionModel, VisualModel, etc.
I Multimodel simulations using mappings
I Explicit and implicit solvers, Lagrange multipliers

Efficiency :
I global vectors and matrices are avoided
I parallel implementations

Implementation :
I currently > 750,000 C++ lines
I Linux, MacOs, Windows



Ongoing work

I models and algorithms : better numerical solvers, cutting,
haptics, Eulerian fluids...

I asynchronous simulation/rendering/haptic feedback
I multiphysics (electrical/mechanical)
I parallelism for everyone
I more documentation

www.sofa-framework.org
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