
SOFA: a modular yet efficient physical
simulation architecture

François Faure, INRIA

22 octobre 2013

Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion

A complex physical simulation

Material, internal forces, contraints, contact detection and
modeling, ODE solution, visualization, interaction, etc.

Open-Source Simulation Software

PhysX ODE Bullet

I Open-source libraries (ODE, Bullet, PhysX, etc.) provide :
I limited number of material types
I limited number of geometry types
I no control on collision detection algorithms
I no control on interaction modeling
I few (if any) control of the numerical models and methods.
I no control on the main loop

I We need much more !
I models, algorithms, scheduling, visualization, etc.

A generic approach

I Behavior model : all internal laws
I Others : interaction with the world
I Mappings : relations between the models (uni- or

bi-directional)

Animation of a simple body

I a liver

I inside : soft material
I surface : stiffer material

A specialized program :� �
f = M∗g
f += F1 (x , v)
f += F2 (x , v)
a = f /M
a = C(a)
v += a ∗ dt
x += v ∗ dt
d i sp lay (x)
� �

Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion

Components

I state vectors (DOF) :
x , v ,a, f

I constraints : fixed points
other : oscillator, collision
plane, etc.

I force field : tetrahedron
FEM

I force field : triangle FEM
I mass : uniform
I ODE solver : explicit Euler

Components

I state vectors (DOF) :
x , v ,a, f

I constraints : fixed points
I force field : tetrahedron

FEM
other : triangle FEM,
springs, Lennard-Jones,
SPH, etc.

I force field : triangle FEM
I mass : uniform
I ODE solver : explicit Euler

Components

I state vectors (DOF) :
x , v ,a, f

I constraints : fixed points
I force field : tetrahedron

FEM
I force field : triangle FEM

I mass : uniform
I ODE solver : explicit Euler

Components

I state vectors (DOF) :
x , v ,a, f

I constraints : fixed points
I force field : tetrahedron

FEM
I force field : triangle FEM
I mass : uniform

other : diagonal, sparse
symmetric matrix

I ODE solver : explicit Euler

Components

I state vectors (DOF) :
x , v ,a, f

I constraints : fixed points
I force field : tetrahedron

FEM
I force field : triangle FEM
I mass : uniform
I ODE solver : explicit Euler

other : Runge-Kutta,
implicite Euler, static
solution, etc.

Multiple objects with their own solvers

Each object can be simulated using its own solver

F MDOF solver

Scene

F MDOF solver

Object 1 Object 2

Multiple objects with the same solver

A solver can drive an arbitrary number of objects of arbitrary
types

F MDOF

Scene

F MDOF

solver
Object 1 Object 2

Processing multiple objects using visitors

I The ODE solver sends visitors to apply operations
I The visitors traverse the scene and apply virtual methods

to the components
I The methods read and write state vectors (identified by

symbolic constants) in the DOF component
I Example : accumulate force

I A ResetForceVisitor recursively traverses the nodes of
the scene (only one node here)

I All the DOF objects apply their resetForce() method
I An AccumulateForceVisitor recursively traverses the

nodes of the scene
I All the ForceField objects apply their addForce(

Forces, const Positions, const Velocities)
method

I the final value of f is weight + tetra fem force + trian fem
force

Scene data structure

Scene hierarchy :
1. the scene is composed of nodes organized in a Directed

Acyclic Graph (DAG, i.e. generalized hierarchy)
2. nodes contain components (mass, forces, etc.) and a list of

child nodes
3. components contain attributes (density, stiffness, etc.)

Data graph :
I attributes can be connected together for automatic copies
I attributes can be connected by engines, which update their

output based on the values of their input
I the attributes and engine compose a DAG

Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion

Layered object

Detailed geometry embedded in a coarse deformable grid

I independent DOFs (blue)

I skin vertices (salmon)
I mapping
I collision samples (green)
I collision mapping
I apply displacements

1. vskin = Jskinv
2. vcollision = Jcollisionvskin

I apply forces
1. fskin = JT

collisionfcollision
2. f = JT

skinfskin

Layered object
Detailed geometry embedded in a coarse deformable grid

I independent DOFs (blue)
I skin vertices (salmon)

I mapping
I collision samples (green)
I collision mapping
I apply displacements

1. vskin = Jskinv
2. vcollision = Jcollisionvskin

I apply forces
1. fskin = JT

collisionfcollision
2. f = JT

skinfskin

Layered object
Detailed geometry embedded in a coarse deformable grid

I independent DOFs (blue)
I skin vertices (salmon)
I mapping

I collision samples (green)
I collision mapping
I apply displacements

1. vskin = Jskinv
2. vcollision = Jcollisionvskin

I apply forces
1. fskin = JT

collisionfcollision
2. f = JT

skinfskin

Layered object
Detailed geometry embedded in a coarse deformable grid

I independent DOFs (blue)
I skin vertices (salmon)
I mapping
I collision samples (green)
I collision mapping

I apply displacements
1. vskin = Jskinv
2. vcollision = Jcollisionvskin

I apply forces
1. fskin = JT

collisionfcollision
2. f = JT

skinfskin

Layered object

Detailed geometry embedded in a coarse deformable grid

I independent DOFs (blue)
I skin vertices (salmon)
I mapping
I collision samples (green)
I collision mapping
I apply displacements

1. vskin = Jskinv
2. vcollision = Jcollisionvskin

I apply forces
1. fskin = JT

collisionfcollision
2. f = JT

skinfskin

Layered object

Detailed geometry embedded in a coarse deformable grid

I independent DOFs (blue)
I skin vertices (salmon)
I mapping
I collision samples (green)
I collision mapping
I apply displacements

1. vskin = Jskinv
2. vcollision = Jcollisionvskin

I apply forces
1. fskin = JT

collisionfcollision
2. f = JT

skinfskin

More on mappings

I Map a set of degrees of freedom (the parent) to another
(the child).

I Typically used to attach a geometry to control points (but
see Flexible and Compliant plugins).

I Child degrees of freedom (DOF) are not independent :
their positions are totally defined by their parent’s.

I Displacements are propagated top-down (parent to child) :
vchild = Jvparent

I Forces are accumulated bottom-up : fparent + = JT fchild

The physics of mappings

Example : line mapping

vc =
(

a b
)(v1

v2

)
= Jv(

f1
f2

)
=

(
a
b

)
fc = JT fc

Examples of mappings

I RigidMapping can be used
to attach points to a rigid
body

I to attach a visual model

I BarycentricMapping can
be used to attach points to
a deformable body

I More advanced mapping
can be applied to fluids

Examples of mappings

I RigidMapping can be used
to attach points to a rigid
body

I to attach collision
surfaces

I BarycentricMapping can
be used to attach points to
a deformable body

I More advanced mapping
can be applied to fluids

Examples of mappings

I RigidMapping can be used
to attach points to a rigid
body

I BarycentricMapping can
be used to attach points to
a deformable body

I to attach a visual model

I More advanced mapping
can be applied to fluids

Examples of mappings

I RigidMapping can be used
to attach points to a rigid
body

I BarycentricMapping can
be used to attach points to
a deformable body

I to attach collision
surfaces

I More advanced mapping
can be applied to fluids

Examples of mappings

I RigidMapping can be used
to attach points to a rigid
body

I BarycentricMapping can
be used to attach points to
a deformable body

I More advanced mapping
can be applied to fluids

Examples of mappings

I RigidMapping can be used
to attach points to a rigid
body

I BarycentricMapping can
be used to attach points to
a deformable body

I More advanced mapping
can be applied to fluids

On the physical consistency of mappings

I Conservation of energy :
Necessary condition : vchild = Jvparent ⇒ fparent + = JT fchild

I Conservation of momentum :
Mass is modeled at one level only. There is no transfer of
momentum.

I Constraints on displacements (e.g. incompressibility, fixed
points) are not easily applied at the child level

Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion

Two objects in contact

Example : 2-layer liver against 3-layer liver using a contact
force.
Use extended trees (Directed Acyclic Graphs) to model trees
with loops.

ODE solution of interacting objects

I Soft interactions : independent processing, no
synchronization required

I Stiff interactions : unified implicit solution with linear solver,
synchronized objects

I Hard interaction constraints using Lagrange multipliers

ODE solution of interacting objects

I Soft interactions : independent processing, no
synchronization required

I Stiff interactions : unified implicit solution with linear solver,
synchronized objects

I Hard interaction constraints using Lagrange multipliers

ODE solution of interacting objects

I Soft interactions : independent processing, no
synchronization required

I Stiff interactions : unified implicit solution with linear solver,
synchronized objects

I Hard interaction constraints using Lagrange multipliers

Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion

Actions implemented by Visitors

I No global state vector
I Operation = graph traversal + abstract methods + vector

identificators

Example : clearing a global vector
I The solver triggers an action starting from its parent

system and carrying the necessary symbolic information
I the action is propagated through the graph and calls the

appropriate methods at each DOF node

Example : accumulating the forces
I The solver triggers the appropriate action
I the action is propagated through the graph and calls the

appropriate (botom-up) methods at each Force and
Mapping node

Efficient implicit integration

I Large time steps for stiff internal forces and interactions
I solve (αM + βh2K)∆v = h(f + hKv) Iteratively using a

conjugate gradient solution

Actions :
I propagateDx
I computeDf
I vector operations
I dot product (only global value directly accessed by the

solver)
System assembly in the Compliant plugin

Efficiency

I No global state vector
I they are scattered over the DOF components
I each DOF component can be based on its own types (e.g.

Vec3, Frame, etc.)
I symbolic values are used to represent global state vectors

I Action = graph traversal + global vector ids + call of
abstract top-down and bottom up methods

I Displacements are propagated top-down
I Interactions forces are evaluated after displacement

propagation
I Forces are accumulated bottom-up
I virtual functions applied to components

Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion

Collision detection and response

CollisionPipeline component orchestrates specific components
I BroadPhase : bounding volume intersections
I NarrowPhase : geometric primitive intersections
I Reaction : what to do when collisions occur
I GroupManager : putting colliding objects under a common

solver
Recent work uses the GPU

Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion

Parallelism in time integration

Different levels of parallelism :
I Low level : GPU implementations of components
I High level : task-based using data dependencies
I Thread-based using the Multithread plugin

We can combine them !

GPU Parallelism
I StiffSpringForceField, TetrahedronFEMForceField,

HexahedronFEMForceField are implemented on the GPU
I The DOF component makes data transfer transparent
I CPU and GPU components can be used simultaneously
I Nice speedups

Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion

Conclusion - Features

High modularity :
I Abstract components : DOF, Force, Constraint, Solver,

Topology, Mass, CollisionModel, VisualModel, etc.
I Multimodel simulations using mappings
I Explicit and implicit solvers, Lagrange multipliers

Efficiency :
I global vectors and matrices are avoided
I parallel implementations

Implementation :
I currently > 750,000 C++ lines
I Linux, MacOs, Windows

Ongoing work

I models and algorithms : better numerical solvers, cutting,
haptics, Eulerian fluids...

I asynchronous simulation/rendering/haptic feedback
I multiphysics (electrical/mechanical)
I parallelism for everyone
I more documentation

www.sofa-framework.org

	Motivation
	Simple bodies
	Layered objects using node hierarchies
	Interacting objects
	Implementation
	Collision detection and response
	Parallelism
	Conclusion

