Implicit Methods

SIGGRAPH 2001 COURSE NOTES

"Give me Stability or Give me Death"

— Baraff's other motto

stability is all stability is all stability is all

- If your step size is too big, your simulation blows up. It isn't pretty.
- Sometimes you have to make the step size so small that you never get anyplace.
- Nasty cases: cloth, constrained systems.

stability is all stability is all stability is all

- If your step size is too big, your simulation blows up. It isn't pretty.
- Sometimes you have to make the step size so small that you never get anyplace.
- Nasty cases: cloth, constrained systems.
- Solutions:
 - -Now: use explosion-resistant methods.
 - -Later: reformulate the problem.

A very simple equation

A 1-D particle governed by $\dot{x} = -kx$ where *k* is a stiffness constant.

Euler's method has a speed limit

h > 1/k: oscillate.

h > 2/k: explode!

Stiff Equations

- In more complex systems, step size is limited by the largest *k*. One stiff spring can screw it up for everyone else.
- Systems that have some big *k*'s mixed in are called <u>stiff</u> systems.

A Stiff Energy Landscape

Example: particle-on-line

- A particle *P* in the plane.
- Interactive "dragging" force $[f_x, f_y]$.
- A penalty force [0,-*ky*] tries to keep *P* on the *x*axis.

P	$[f_x, f_y]$
	[0, - <i>ky</i>]

Example: particle-on-line

- A particle *P* in the plane.
- Interactive "dragging" force $[f_x, f_y]$.
- A penalty force [0,-*ky*] tries to keep *P* on the *x*axis.

- Suppose you want *P* to stay within a miniscule ε of the *x*-axis when you try to pull it off with a huge force f_{max} .
- How big does k have to be? How small must h be?

Really big k. Really small h.

Really big k. Really small h.

Answer: *h* has to be so small that *P* will never move more than ε per step.Result: Your simulation grinds to a halt.

Explicit Integration

(Explicit) Euler Method

 $x(t_0 + h) = x(t_0) + h \dot{x}(t_0)$

Implicit Euler Method

 $x(t_0 + h) = x(t_0) + h \dot{x}(t_0)$

$x(t_0 + h) = x(t_0) + h \dot{x}(t_0 + \Delta t)$

Implicit Euler for $\dot{x} = -kx$

$x(t+h) = x(t) + h\dot{x}(t+h)$ = x(t) - hkx(t+h) $= \frac{x(t)}{1+hk}$

One Step: Implicit vs. Explicit

Large Systems

 $\frac{d}{dt}\mathbf{X}(t) = \mathbf{X}(t) = f(\mathbf{X}(t))$

$\Delta \mathbf{X}(t_0) = h \mathbf{X}(t_0 + \Delta t) = h f \left(\mathbf{X}(t_0 + \Delta t) \right)$ $= h f \left(\mathbf{X}(t_0) + \Delta \mathbf{X}(t_0) \right)$

Implicit Integration

Implicit Integration

Implicit Integration (Big Step)

(Linearized) Implicit Integration

 $\mathbf{X}(t) = f\left(\mathbf{X}(t)\right)$

$\Delta \mathbf{X} = h f \left(\mathbf{X}_0 + \Delta \mathbf{X} \right)$

$$\Delta \mathbf{X} = h \left(f(\mathbf{X}_0) + \left(\frac{\partial f}{\partial \mathbf{X}} \right) \Delta \mathbf{X} \right)$$

Single-Step Implicit Euler Method

$$\Delta \mathbf{X} = h \left(f \left(\mathbf{X}_0 \right) + \left(\frac{\partial f}{\partial \mathbf{X}} \right) \Delta \mathbf{X} \right)$$

$$\left(\mathbf{I} - h\frac{\partial}{\partial \mathbf{X}} \begin{pmatrix} \bullet \\ \mathbf{X}(t_0) \end{pmatrix} \right) \Delta \mathbf{X} = h \mathbf{X}(t_0)$$

 $n \times n$ sparse matrix

Solving Large Systems

- Matrix structure reflects force-coupling: (*i*,*j*)th entry exists iff f_i depends on \mathbf{X}_i
- Conjugate gradient a good first choice
- Is this a lot of work?