SOFA: a modular yet efficient physical simulation architecture

François Faure, INRIA

22 octobre 2013
Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion
A complex physical simulation

Material, internal forces, contraints, contact detection and modeling, ODE solution, visualization, interaction, etc.
Open-Source Simulation Software

- Open-source libraries (ODE, Bullet, PhysX, etc.) provide:
 - limited number of material types
 - limited number of geometry types
 - no control on collision detection algorithms
 - no control on interaction modeling
 - few (if any) control of the numerical models and methods.
 - no control on the main loop

- We need much more!
 - models, algorithms, scheduling, visualization, etc.
A generic approach

- Behavior model: all internal laws
- Others: interaction with the world
- Mappings: relations between the models (uni- or bi-directional)
Animation of a simple body

- a liver
 - Glisson capsule
 - Parenchyma
 - Fixed points

- inside: soft material
- surface: stiffer material

A specialized program:

\[
\begin{align*}
f & = M \times g \\
f & += F_1(x, v) \\
f & += F_2(x, v) \\
a & = \frac{f}{M} \\
a & = C(a) \\
v & += a \times dt \\
x & += v \times dt \\
\text{display}(x)
\end{align*}
\]
Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion
Components

- state vectors (DOF): x, v, a, f
- constraints: fixed points
 other: oscillator, collision plane, etc.
- force field: tetrahedron FEM
- force field: triangle FEM
- mass: uniform
- ODE solver: explicit Euler
Components

- state vectors (DOF) : \(x, v, a, f\)
- constraints : fixed points
- force field : tetrahedron FEM
 other : triangle FEM, springs, Lennard-Jones, SPH, etc.
Components

- state vectors (DOF): x, v, a, f
- constraints: fixed points
- force field: tetrahedron FEM
- force field: triangle FEM

Diagram:
```
    system
     ├── DOF
     └── Constraint ─── FEM-tetra ─── FEM-trian
```
Components

- state vectors (DOF): \(x, v, a, f \)
- constraints: fixed points
- force field: tetrahedron FEM
- force field: triangle FEM
- mass: uniform
 - other: diagonal, sparse symmetric matrix
Components

- state vectors (DOF) : x, v, a, f
- constraints : fixed points
- force field : tetrahedron FEM
- force field : triangle FEM
- mass : uniform
- ODE solver : explicit Euler
 other : Runge-Kutta, implicit Euler, static solution, etc.
Multiple objects with their own solvers

Each object can be simulated using its own solver
Multiple objects with the same solver

A solver can drive an arbitrary number of objects of arbitrary types
Processing multiple objects using visitors

- The ODE solver sends visitors to apply operations
- The visitors traverse the scene and apply virtual methods to the components
- The methods read and write state vectors (identified by symbolic constants) in the DOF component
- Example: accumulate force
 - A ResetForceVisitor recursively traverses the nodes of the scene (only one node here)
 - All the DOF objects apply their resetForce() method
 - An AccumulateForceVisitor recursively traverses the nodes of the scene
 - All the ForceField objects apply their addForce(Forces, const Positions, const Velocities) method
 - the final value of f is weight + tetra fem force + trian fem force
Scene data structure

Scene hierarchy:
1. the scene is composed of *nodes* organized in a Directed Acyclic Graph (DAG, i.e. generalized hierarchy)
2. nodes contain *components* (mass, forces, etc.) and a list of child nodes
3. components contain *attributes* (density, stiffness, etc.)

Data graph:
- attributes can be connected together for automatic copies
- attributes can be connected by engines, which update their output based on the values of their input
- the attributes and engine compose a DAG
Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion
Layered object

Detailed geometry embedded in a coarse deformable grid

- independent DOFs (blue)

1. $v_{\text{skin}} = J_{\text{skin}} v$
2. $v_{\text{collision}} = J_{\text{collision}} v_{\text{skin}}$

- apply forces

1. $f_{\text{skin}} = J_{\text{T}} f_{\text{collision}}$
2. $f = J_{\text{T}} f_{\text{skin}}$
Layered object

Detailed geometry embedded in a coarse deformable grid

- independent DOFs (blue)
- skin vertices (salmon)

$$v^{\text{skin}} = J^{\text{skin}} v$$

$$v^{\text{collision}} = J^{\text{collision}} v^{\text{skin}}$$

$$f^{\text{skin}} = J^{\text{T}} \cdot \text{collision} f^{\text{collision}}$$

$$f = J^{\text{T}} \cdot \text{skin} f^{\text{skin}}$$
Layered object

Detailed geometry embedded in a coarse deformable grid

- independent DOFs (blue)
- skin vertices (salmon)
- mapping

\[\text{skin} = J_{\text{skin}} \text{v} \]
\[\text{collision} = J_{\text{collision}} \text{v}_{\text{skin}} \]

\[\text{f}_{\text{skin}} = J_{\text{collision}}^T \text{f}_{\text{collision}} \]
\[\text{f} = J_{\text{skin}}^T \text{f}_{\text{skin}} \]
Layered object

Detailed geometry embedded in a coarse deformable grid

- independent DOFs (blue)
- skin vertices (salmon)
- mapping
- collision samples (green)
- collision mapping
Layered object

Detailed geometry embedded in a coarse deformable grid

- independent DOFs (blue)
- skin vertices (salmon)
- mapping
- collision samples (green)
- collision mapping
- apply displacements
 1. $v_{skin} = J_{skin} v$
 2. $v_{collision} = J_{collision} v_{skin}$
Layered object

Detailed geometry embedded in a coarse deformable grid

- independent DOFs (blue)
- skin vertices (salmon)
- mapping
- collision samples (green)
- collision mapping
- apply displacements
 1. $v_{\text{skin}} = J_{\text{skin}} \mathbf{v}$
 2. $v_{\text{collision}} = J_{\text{collision}} v_{\text{skin}}$
- apply forces
 1. $f_{\text{skin}} = J_{\text{collision}}^T f_{\text{collision}}$
 2. $f = J_{\text{skin}}^T f_{\text{skin}}$
More on mappings

- Map a set of degrees of freedom (the parent) to another (the child).
- Typically used to attach a geometry to control points (but see Flexible and Compliant plugins).
- Child degrees of freedom (DOF) are not independent: their positions are totally defined by their parent’s.
- Displacements are propagated top-down (parent to child): \(\nu_{child} = J\nu_{parent} \)
- Forces are accumulated bottom-up: \(f_{parent} + = J^T f_{child} \)
The physics of mappings

Example: line mapping

\[v_c = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = Jv \]

\[\begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} f_c = J^T f_c \]
Examples of mappings

- RigidMapping can be used to attach points to a rigid body
 - to attach a visual model

- BarycentricMapping can be used to attach points to a deformable body

- More advanced mapping can be applied to fluids
Examples of mappings

- RigidMapping can be used to attach points to a rigid body
 - to attach collision surfaces

- BarycentricMapping can be used to attach points to a deformable body

- More advanced mapping can be applied to fluids
Examples of mappings

- RigidMapping can be used to attach points to a rigid body
- BarycentricMapping can be used to attach points to a deformable body
 - to attach a visual model
Examples of mappings

- RigidMapping can be used to attach points to a rigid body
- BarycentricMapping can be used to attach points to a deformable body
 - to attach collision surfaces
Examples of mappings

▶ RigidMapping can be used to attach points to a rigid body
▶ BarycentricMapping can be used to attach points to a deformable body
▶ More advanced mapping can be applied to fluids
Examples of mappings

- RigidMapping can be used to attach points to a rigid body
- BarycentricMapping can be used to attach points to a deformable body
- More advanced mapping can be applied to fluids
On the physical consistency of mappings

- Conservation of energy:
 Necessary condition: $v_{child} = Jv_{parent} \Rightarrow f_{parent} + = J^T f_{child}$

- Conservation of momentum:
 Mass is modeled at one level only. There is no transfer of momentum.

- Constraints on displacements (e.g. incompressibility, fixed points) are not easily applied at the child level
Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion
Two objects in contact

Example: 2-layer liver against 3-layer liver using a contact force. Use extended trees (Directed Acyclic Graphs) to model trees with loops.
Soft interactions: independent processing, no synchronization required
ODE solution of interacting objects

- Soft interactions: independent processing, no synchronization required
- Stiff interactions: unified implicit solution with linear solver, synchronized objects
ODE solution of interacting objects

- Soft interactions: independent processing, no synchronization required
- Stiff interactions: unified implicit solution with linear solver, synchronized objects
- Hard interaction constraints using Lagrange multipliers
Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion
Actions implemented by Visitors

- No global state vector
- Operation = graph traversal + abstract methods + vector identifiers
Example: clearing a global vector

- The solver triggers an action starting from its parent system and carrying the necessary symbolic information.
- The action is propagated through the graph and calls the appropriate methods at each DOF node.
Example: accumulating the forces

- The solver triggers the appropriate action
- the action is propagated through the graph and calls the appropriate (bottom-up) methods at each Force and Mapping node
Efficient implicit integration

- Large time steps for stiff internal forces and interactions
- Solve \((\alpha M + \beta h^2 K)\Delta v = h(f + hKv)\) iteratively using a conjugate gradient solution

Actions:
- `propagateDx`
- `computeDf`
- vector operations
- dot product (only global value directly accessed by the solver)

System assembly in the Compliant plugin
Efficiency

- No global state vector
 - they are scattered over the DOF components
 - each DOF component can be based on its own types (e.g. Vec3, Frame, etc.)
 - symbolic values are used to represent global state vectors
- Action = graph traversal + global vector ids + call of abstract top-down and bottom up methods
 - Displacements are propagated top-down
 - Interactions forces are evaluated after displacement propagation
 - Forces are accumulated bottom-up
 - virtual functions applied to components
Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion
Collision detection and response

CollisionPipeline component orchestrates specific components

- BroadPhase: bounding volume intersections
- NarrowPhase: geometric primitive intersections
- Reaction: what to do when collisions occur
- GroupManager: putting colliding objects under a common solver

Recent work uses the GPU
Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion
Parallelism in time integration

Different levels of parallelism :

- Low level: GPU implementations of components
- High level: task-based using data dependencies
- Thread-based using the Multithread plugin

We can combine them!
GPU Parallelism

- StiffSpringForceField, TetrahedronFEMForceField, HexahedronFEMForceField are implemented on the GPU
- The DOF component makes data transfer transparent
- CPU and GPU components can be used simultaneously
- Nice speedups
Outline

Motivation

Simple bodies

Layered objects using node hierarchies

Interacting objects

Implementation

Collision detection and response

Parallelism

Conclusion
Conclusion - Features

High modularity:
- Multimodel simulations using mappings
- Explicit and implicit solvers, Lagrange multipliers

Efficiency:
- Global vectors and matrices are avoided
- Parallel implementations

Implementation:
- Currently > 750,000 C++ lines
- Linux, MacOS, Windows
Ongoing work

- models and algorithms: better numerical solvers, cutting, haptics, Eulerian fluids...
- asynchronous simulation/rendering/haptic feedback
- multiphysics (electrical/mechanical)
- parallelism for everyone
- more documentation

www.sofa-framework.org